UNCLASSIFIED

o 206 147

Reproduced
sy the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

Best Available Copy ,

UNCLASSIF




NOTICE: When govermment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. 8.
Government thereby incurs no responsibility, nor any
obligation vhatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any wvay
supplied the said drawings, specificatioms, or other
data is not to be regarded dy implication or cother-
wise as in any manner liceunsing the holder or any
other person or corporation, or conveying any right.e
or permission to manufacture, use or sell any
patented invention that may in any way te related
thereto.



APCRL-62-681
ALY 1962

Alr Force Surveys in Geophysics
No. 147

Research Report

Mean Annual Mid-Latitude Moisture Profiles to 31 Km
MURRAY GUTNICK

METEOROLOGICAL DEVELOPMENT LABORATORY  PROJECT 8624
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES, OF FICE OF AEROSPACE RESEARCH, UNITED STATES AIR FORCE, L. G. HANSCOM FIELD, MASS.




Abstract

Average yearly vertical profiles up to 31 km for middle latitude,
derived independently, for mixing ratio and moistui ¢ dewpoint-frostpoint,
are pregented. Since the relation between mixing ratio and frostpoint is
non-linear, other moisture expressions were derived from each of the two
basic profiles, using Standard Atmosphere conditions. Upto 7 km (400 mb),
the profiles were derived by an indirect approach; conventional radiosonde
humidity measurements were utilized. Above that level the profiles are
based upcr selected experimental humidity ascents, subjectively selected
and weighted. The mixing ratio profile decreases irom 6,130 parts per
million at the surface to 9 ppm at 16 km then increases siightly with height;
the surface dewpoint is taken as 4°* C, decreasingto -T8°C at 18 km, then
increasing to -71°C at 31 km.,
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Individual hygrometric ascents on the east coast of the 23
United States, used in deriving the mean mixing ratio pro-

file. Data from Mastenbroua anl Dinger (1960, 1961),

Marks (1960), and an unpublished report by Brown and

Pybus, All ascents were smoothed except B-2, which illus-
trates the variability shown by some of the original data.

Individual hygrometric (unpublished) and spectroscopic 24
ascents by the University of Denver (Murcray et al, 1961),
means of hygrometric flights by the Japancse Meteorological
Agency (JMA 1980) and by the British Meteorological Research
Flight (Tucker 1957), and spot measurements by the UK

Atomic Energy Authority vapor trap (Barclay et al 1966,

Brown et al 1961) and the General Mills, Inc., Molecular

sieve (Steinberg and Rohrbaugh, 1961),

Estimated mean annual mixing ratio in middle latitudos, 25
as derived from indicated values obtained by various ra: -hods.

Estimated mean annual dewpoint and frostpoint in middle 28
latitudes, as derived from individual values and ineans of
various investigations. The temperature curve is that of the
revised U, S. Standard Atmosphere,
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2,

Instruments, investigators, and organizations respensible 8
for nonsystematic stratospheric humidity measurements.

Mixing ratios in mg/kg (parts per million) at 80 mb over 10
Tateno (T), Sapporo (S), Hachijoshima (H), and Kagoshima

(K), Japan, derived from dewpoints rounded to nearest

degree,

Mixing ratios in mg/kg (parts per million) at 200 mb over 11
Tateno (T), Sapporo (S), Hachijoshima (H), and Kagoshima

(K), Japan, derived from dewpoints rounded to nearest

degree,

Mean annual mixing ratio (W) and dewpoint-frostpoint 20, 21
vy 4 Tf) in middle latitudes, to 31 km, based on avai!able

routine and experimental data considered reliable, “#ith

related quantities computed (where required) for concitions

of revised U. S, Standard Aumosphere, 1962,
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Symbol Meanirlg' Units used herein \
R Density of air or of water vapor glm3 or ullm3
T Temperature <
P Pressure mb
e Vapor pressure " microbars (ub) =
10 3mb
w Precipitable water microns (g) = 10"%cm
w Mixing ratio mg/kg or parts per
million (ppm) ,
U Relative humidity percent
H Altitude gevpotenttal km N
Subscripts .
d Dewpoint '
f Frostpoint
[ at saturation
v at actual vapor concentration
Additional Notation
A symbol followed by a prime (') indicates derivation ‘rora the mean
dewpoint or {rostpoint, ratier than from mean mixing rat-c. A bar . )

above a symbol indicates a mean value,
xi




Meen Annual Mid-Latitude
Moisture Profiles to 31 KM

l.  PURPOSE

This study offers preliminary models of the variation with height
of atmospheric moisture, similar in concept to that of other standzrd
atmospheres. Standard atmospheres were developed primarily as a
realistic reference for the standardization of aircratt instruments and
performance standards. The first models were relatively crude, but as the
needs of the aircraft and associatéd industries increased, and as atmospheric
data became more plentiful, model atmospheres were revised, refined, and
extended to higher altitudes. For example, the U. S. Committee on
Extensinn of the Standard Atmosphere (COESA) is sponsoring Supplemental
Atmospheres for every 15° latitude for summer and winter,

Basic elements of the Standard Atmosphere are temperature and
pressure as functions of altitude; from them, virtually every other desired
element, such as density, mean free path, molecular weight, etc., can be

With the exception of low-level relative humidity -lata used in

computed.
-~ variation with

some atmospheres for virtual temperature computations,
altitude of any moisture parameter is not 1aentioned in any published model

atmosphere, yet scientists and designers engaged in the atmospheric
radiation field have a pressing need for such information.

(Author's manuscript approved for publication, 24 May 1962)
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To catisfy these needs, two independent moisture profiles have
been developed from the available data which, after thorough evaluation,
appeared reliablc; one profile is for mixing ratio, the other for dewpoint and
frostpoir... Because the relation between mixing ratio and dewpoint-
frostpoint is not linear, these two sets of iu..9ture measure differ significantly,
Each is based on observations reported in, or converted to, appropriate
units. In addition, other measures of moisture (precipitable water, absolute
humidity, vapor density, relative humidity) have been derived from each of
the two basic representations.

The paucity and ambiguity of upper-air moisture data make the models
offered here quite crude, and limit them to the middle latitudes (35°to 55°)
of the Northern Hemisphere; no stratospheric moisture measurements are
available as yet for the Southern Hemisphere, The models are restricted to
average yearly values, and extu.d cnly to 31 km, the upper ¥mit of observation.
As observations increase, the models can be revised, refined, and extended,
to evolve in the same way as vther representations of atmospheric structure,

2. INSTRUMENTS

Routine upper-air measurement of temperatures, pressures, and
humidities are made by raviosonde. The humidity measurements are the
least accurate of all these, and are the most limited in vertical extert. Many
different humidity elements have been used at one time or another in
radiosondez (hair, goldbeater's skin, lithium chloride, carbon element, etc.),
but none has yet proven entirely satisfactory. The lithivm chloride strip in the
current U, S. radiosonde ceases to function at temperatures below -40°C or,
when the relative humidity is very low,

Estimates of relative humidity called ''statistical vilics" are recorded
when the hygrometer is below its operating range. For ex.unple, when the
hummidity element causes ''motorboatiing'' at 12°to 4C*C. a statistical value
of 12 % is recorded in parentheses on the appropriate form (Air Weather
Service 1961);1 but on punch cards for machine tabuiatior.:, the statistical
value i3 used without such notation, and the machine tabulations include these
estimated values, All the conventional radiosonde humidity data used in this
report were machine tabulated from radiosondes utilizing a lithium chloride
humidity element; hence, they contain the aforementioned errors.

More than haif the humidities reported at 400 and 300 mb at 12
representative stations, from Anchorage to Miami, during the five years,
1956-1960, were such ''statistical'’ values. Maximum, average, and minimum
percentages of estimated values as listed in an unpublished Weather Bureau
tabuiation were:




. . i P .

f.evel (mb) 830 700 500 400 300
Maximum 21 40 53 58 78
Average 8 15 39 50 60
Minimum 3 9 28 36 52

Temperature limitations preclude radiosonde humidity data at
altitude~ higher than 9 km in the mid-latitudes. In fact, most summarized
data extend only as high as 400 mb (7 km). At higher altitudes, present
know.edge of humidity has been obtained from experimental ascents
uti'izing special humidity-measuring equipment. Of all the many instrument
0. methods used to obtain high-altitude humidity values, all but three have
cither been proven unreliable ur are still in the developmental stage. Any
system. may be sutject to possible contamination of th: air sample by
water vapor carricd aloft by the balloon, aircraft, or instrument,

2.1 Direct Measurement of the Frost Point

Direct measurement of the frostpoint has been by far the most
common method of measuring stratospheric humidity, The frostpoint
hygrometer consists of a polished plate cooled by a refrigerating system
until frost occurs, a sensing device to detect the frost formation, stop
the refrigeration and start a heating element to melt the frost, and a
temperature-measuring device (thermistor) embedded in the plate. Thus
the device '""hunts'' for “ne temperature at which frost first occurs, and
measures the frostpoint (Tq) directly.

The frostpoint hygrometer has several variations. An aircraft -
mounted, manually-operated, model is used extensively in Eusland, while
balloon-borne automatic (telemetering) devices have been unc ! ulmost
exclusively in the U. S. and Japan.

The frostpoint hygrometer has been much critized for possible
inadequate cooling power of the refrigeration system, overcompensation by
the heating coil, inadequate ventilation of the instrument, etc. The
instirument has undery..ne considerable modification to eliminate some of the
objectionanie jeatures, amd coitinucs to e the most common method of

measuring stratospheric moisture.
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2.2 Attenuation of Radiation by Water Vapor

Attenuation of radiation by water vapor is measured by coupling a sun-
seeker with a spectrometer flown on a balloon (aircraft platforms have occasionally
been used). From measurement of the infrared snlar spectrum, the amount of
water between the spectrometer and the sun can be deduced. To obtain a vertical
moisture profile, several observations must be made on each ascenl. The
accuracy of the infrared absorption measurements has not heen questioned but ) '
the resuits of such measu-ements are somewhat subjective (Murcray, et al. 196 1)19 ’
because:
a, Absorption by the water vapor in the path is a function of the '
temperature and pressure and, thus, depends on their vertical structure above
peak altitude; this structure must be assumed by the analyst, N
b. The selection of the absorption laws to be used in calculating the amount
of watcs vapor is not clear-cut but depends on the judgement of the anslyst.

2.3 Collection of Water Vapor by a Filwer

Collection of water vapor by a filter is done by devices carried aloft to
the predetermined altitude by balloon. A known amount of air passes through an
efficient collector that removes all of the water vapor. The instrument is then
cut loose, recovered, and analyzed quantitatively for water so that the mixing
ratio (w) is measure directly.

These absorption devices generally are considered by most investigators
to Le the most accurate of all stratospheric humidity measuring devices, Un-
fortunately, such devices do not give vertical profiles. In theory, profiles can
be obtained by suspending a number of devices from the same bulloon to sample at
a number of levels; in practice, the number of devices is sev:ri:ly limited by the 8 .
payload capacity of the balloon. Alternatively, a number of L.n“lcons could be
released simultaneously to sample at different levels, but this approach is also
beset with technical difficulties. To date, only single altitude samples have been
made. Two different instruments utilizing this principle have been used:

a. A ''Nitrogen - Cooled Vapor Trap'' designed for and flown by the . g"
United Kingdom Atomic Energy Authority (UKAEA), Inthis device the water vapor
and CO, are frozen out when the air passes through a trap cooled with liquid
nitrogen. Since the ratio of CO2 to air is constant to altitudes far above 30 km,
the total amount of ingested air can be deduced by measuring the amount of C()2
in the trap (Barclay, et al. 1980;3 Brown, et al, lBBl)fi

b. In the '"Molecular Sieve)'flown by General Mills, Inc,, the absorber is
a chemical (zeolite) which trapc the water vapor as well as CO,. The air passing
through the zeolite filter is metered and a COz determination is also made, thus
giving a double check on the amount of ingested air, (Steinberg and Rohrbough 1961).2 8




3. MEASURTMENTS

Available humidity data can be classified conveniently into two
general classes: up to 400 mb (about 7/ km) ar< from that point to 10 mb
(31 km), In this study tne average elevation of annual mid-latitude tropopause
has been taken as 11 km, in n.-cordance with the Standard Atmospiere;
elevations above 1l km will be referred to as stratosphex_-ic, and below,
tropospheric.

Up to 400 mb, where the conventional radiosonde humidity element
often functions, a veritabi.* wealth of duta exists, except over oceans and
sparsely populated regions. Summaries of radiosonde ascents are published
as part of the official publication of various weather services. A reasonably
good world-wide sample of data is also published by the U, S, Wweather Bureau
for WMO as part of the CLIMAT reports (Monthly Climatic Data for the
World), Low-level humidity data are so plentiful that world~wide maps have
appeared for the mid-seasonal montns giving the an.ount of precipitable
water above the surface and above 850, (00, and 500 mb lerels (Bannon and
Steele 1960)2. However, when the temperature was low and tne water vapor
content at 300 mb was not measured (as is often the case), it was assumed
to be zero. Monthly and annual maps of the average precipitable water from
the suriace to 325 mb over the U. S, also are available (Reitan 1960)22.

In these, also, precipitable water was assumed to be zero at temperatures
of -40*C and lower; however, at 350 mb the '"motorboating'' value was

used for the anpropriate temperature when the relative humidity was missing
at that level,

Moisture data are extremely scarce above 400 mb compared to the
lower levels., With two exceptions, all stratospheric mo.:%..re measurements
have been taken nonsy-tematicaliy by individuals and/or organizations
interested in the field, These ascents were made sporadically whenever the
time, location, funds, etc., were available. Less than 50 such stratospheric
ascents have succeeded, and less than 10 reached or exceeded 31 km. Table ]
lists the inatruments, principal investigators, and organizations making thase
nonsystematic stratospheric moisture ascents yielding discrete moisture data
at given pressures or altitudes.




- Table 1
Instruments, investigators, and orgaiizations responsible
for nonsystematic stratospiier‘c humidity measurements,

INSTRUMENT REFERENCI ORGANIZATION

Automatic frostpoint F. W. Barrett, L. R. Herndon Univ. of Chicago

hygrometer and A. J. Carter (1950)%

Hygristor C. J. Brasefield (1954)° USA Signal Corps

Vapor trap F. R. Barclay, M. J. Eliot, United Kingdom
P. Goldsmith, J. V. Jelly, Atomic Energy

(960),3 F. Brown, H. F. Green, Authority (UKAEA)
A. G. Parham (1961)°

Automatic frostpoint J. A. Brown and E, G. Pybus USA Ballistic Rer.earch

hygrometer (1960)8 Laboratories (BRL)
Automatic frostpoint H., J. Masatenbrook, USN Reseurch
hygrometer J. E. Dinger (960, 1961!7 ¥ Laporatory (NRL)

Infrared spectrometer D, C. Murcray, F. H. Murcray Univ. of Denver
and automatic frost- W, J. Williams (1961)2 (U of D)
point hygrometer

Automatic frostpoint T. W. Caless (1961)9 Bendix Aviation Corp.
hygrometer, aircraft-

borne

Molecular sieve S. S. Steinberg and v.eneral Mills, Inc.

S. F. Rohrbough (1961)%8



Two sets of more or less oystematic probes of stratospheric
humidity conditions have been made. The British Meteorological Research
Flights (MRF) used manually operated frostpoint hygrometers; maximum
altitude reached by tiie aircraft were about 125 mb (15 k). Most ascents
were over southern England (Tucker 1957),27 but some were as far away as .
northern Norway (Brewer 1955)7 and Kenya (Kerley 1961).l 5 Nearly 400 ascents R
over southern Englaad, well distributed throughout the year, reachazd or
exceeded 9 km,

In its IGY program, the Japenese Meteorological Agency (JMA)
utilized balloon-~borne automatic frostpoint hygrometers (JMA 1960) during
September and December, 1957; and March, June, September, and December,
1958, at Sapporo (43N, 141E), Tateno (36N, 140E), Hachijoshima (33N; 140E),
and Kagoshima (32N, 131E). On several occasions two ascents were made
in one day; on some days soundings were made at two or more stations -
simultaneously. About 100 ascents reached 300 mbs; 2 ascents, 10 mbs (31 km).

4.  DISCUSSION

The first systematic measurements of stratospheric humidity, by
the MRF indicated frostpoints of - 80 to -85°C, giving mixing ratios around
2 mg/kg (parts per million) at 14 to 15 km, with no apparent seasonal or
geographical variation. This constancy, and the general dryness, were not
substantiated by other ascents in the United States, or by the JMA flights.
No tenable theory of atmoecpheric circulation can explain all such observations
(Gutnick 1960;12 Sissenwine and Gutnick 1960;24 Greenfield and Kellogg 19!50;11
Gutnick 196113,

However, one feature of the stratospheric moi=+ti:c regime is rapidly
gaining wide acceptance among scientists in the field: thi -tructure of the
mixing-ratio profile. Recent humidity ascents show a decrease in mixing
ratio with altitude to a minimum value several kilometers above the tropo-
pause, the exact altitude differing from ascent to =scent. Above this point
the mixing ratio increases to at least 32 km, the highest altitude to which
analysis could be extended. As yet no noncontroversial tenable theory has -
been advanced to explain the physical mechanism involved,

How should an average stratospheric moisture profile be constructed? : .
Some authorities advocate use of only those data which are considered reliable,
But experts do not agree which data are reliable (Gutnick 1961).13 Any profile
based on such selection must, of necessity, be subjective, It will, to a
great extent, reflect the opinions, prejudices, and experience of the selector.




Despite these limitations, the present state-of-the-art renders this
, - approach the only logical method for obtaining a moisture profile. Indiscriminate
| use of available data (some of which are doubtless in error) would yield a

meaningless hodgepodge profile.

The stratosphere moisture profiles presenied here are based on
those stratospheric mois*ure ascents which promised the most valid results.
Thus the moisture profiles in the stratosphere are subjective educated guesce...
A valid annual profile of any atmospheric parameter muet be:

a. Representative of all months or seasons;

b. Representative of the climatic types comprising the selected

area;

c¢. Based on an unbiased sample, i. e. the selected sample must

represent average conditions and not some unusual year or years.

d, Physically consistent with know information, e. g. at any altitude,

the mean dewpoint cannot e warmer than the mean temperature,

The paucity und/or reliability of stratospheric humidiiy data are such
that the only condition that vuuld be-objectively satisfied was that of physical
validity ("'d'').

Since the nonsystematic data were too few in number and too sporadic
in time and space to give general conclusions, only the systematic ascents
(JMA and MRF) could be used for this type of analysis.

In all JMA ascents a conventional radiosonde and a frostpoint hygrometer
were flown simultaneously. The standard elements (temperature, height,
relative humidity) were obtained (when available) from the radiosonde at all
standard levels between 1000 mb and 10 mb. The only elements r~corded or
derived from the frostpoint hygrometer were temperature, deviwini, and
relative humidity, To give equal weight to each day, all pairs ui twice-a-day
ascents for each station were averaged as one observation. For each ascent
the frostpoint and mixing ratio were recorded for every stamard level above
400 mb, For Tateno only the 700, 500, and 100 - mb temperatur~s, and the
dewpoints from both instruments at the 500, and 700 - mb levels, were
extracted. Stratospheric moisture content in the JMA data, unlike that
indicated by the MRF data, was extremely variable (T'ables 2 and 3).

-




To seek general conclusions on seasonal or spatial variations,
the moisture data for all four JMA stations were combined into two categories:
June and September (warm), December and March (cold). Although the MRF
ascents indicated no seusonal variation in the lower stratosphere, the JMA
mean mixing ratios for the warm and cold seasons differ by an average of
15 mg/kg at each stratospheric level; the maximum difference was 49 mg/kg.
Mixing ratioa ranged from i to 138 mg/kg at 200 mb, and {from 1to 84 mg/kg
at 80 mb in the warm season; from 4 to 65 mg/kg at 200 mb, and 2 to
96 mg/kg at 80 mb in the cold months,

The MRF ascents showed the moisture content of the lower
stratosphere was similar for all geographic areas and climatic regimes, but
the means of the MRI" ascents are among the driest and the mean yMA ascent
the wettest on record, in terms of mixing ratio.

This conflict between the JMA and MRF data precluded any firm
decision on seasonal or geographical variations. The most conservative
approach was to assume both seascnal and geographic variation. Thus the
sample selected for analysis should, as nearly as possible, run the gamut
of geographic areas and represent an average of all seasons in the desired
area, i. ¢, middle latitudes.

Both the MRF and JMA data were tested for possib!c bias by
comparing long-period {climatological) records of elemeuts with those
measured on the hygrometric ascents. Mean annual temperatures at the 700,
500 and 200 - mb levels from the MRF ascents werc compared iv the
climatological means at Larkhill (southern England) while i}.e annuai
temperatures from the JMA ascents (mean of December, Maich, June and
September) for Tateno at 700, 500 and 100 mb were compa»nrd o the long-~
term Tateno mean (Goldie, Moore, and Austin 1958)!0

Pressure surface, mb 700 500 200 100
(MRF -4 «21 -55 -
England ;. rkhill mean -4 -20 -56 .
Japan (JMA Flights -1 -15 - -82
(Tateno mean 0 -14 - -81
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The excellent agreement suggests that the samples cre represstative, and
tha: combining December, March, June, and September for the JMA ascents

to yield an annual value is probably valid.

Virtually every stratospheric moisture ascent is bissed to some
degrec Most balloons are launched only when ** « surface wind speeds are
low; and, because there is danger of water contamination to the instrument,
hygrometric ascents are limited to rainless days. The vapor trap was fiown
in England (Brown, Goldsmith, Green, Holt, and Parham KGD‘dy with
light surface winds, clear skies, and a vertical wind profiie such that the ' . |
balloon was not carried over the sea. Such conditions oce: r simsianeously
on only a few days in spring and summer,

\
6. TROPOSPHERE
The most obvious and direct method for obtaining the wertical moisture
distribution in the troposphere would be to map the appropriate radiosonde .
]

data on a worid-wide basis, then pick off values at grid points, or planimeter
the maps to give the desired result., This direct approach would be extremely
costly and time-consuming for relatively small-pressure increments (about ;

every 50 mb), since most pu.blished radiosonde data are only for the standard Co
levels (surface 850, 700, 500, etc.).

A simple alternate method was devised, using recesntly published
world-wide maps (Bannon and Steel 1960)2 of precipitable wste:- above the
surface, above 850 mb, above 700 mb and above 500 mb (in practice the
above refers to an upper limit of 300 mb). Averaging the mid-sessonal
months at grid points, for, say 45°N, gave the mean anmual nrecipitable water
at latitude 45°N, above each of the levels., But the mixing ::tioe or dewpoints
used to construct the precipitable water maps could not be redevived. However,
a station (or several stations) having closely similar precipi=%e water
values for the same layers should exhibit vertical distributions of mixing
ratios and dewpoints representative of the respective mean aarsal values for .
45°N. Although any one of an infinite number of mixing-ratio combinations .
will yield the same precipitable water value above one level; for all practical )
purposes, only one vertical distribution will yield similar precipitable water
values above four widely-separated surfaces, especially if the mixing
ratios must decrease with altitude in the troposphere.




13

Thus in practice two stations having the same ..mount of precipitable water
from tiie surface, 850, 700, and 500 mb to 30) mb, and their mixing ratio
decreasing with height, almost certainly have similar vertical distribution
of mixing ratios and dewpoints,

From the data of Reitan (1960)21 «.-1 other available material,
the search for typical stations was narrowed down to several posuible
choices. The final selection was mean of Fukuoka, Japan, (33° 35N,
130° 27' E) for January and October, and Washington, D. C., (38° 5¢'N,
72° 02' W) for April.

The mean annual precipitable water (em) ‘rom the various levels
to 300 mb, as derived from the maps of Bannon and Steele for 45°N and
obtained from the mean of Fukuoka (January and October) and ‘Vashington,
D. C., (April) was:

Level (mb) SFC 850 700 500
From maps at 45°N L6 0.9 0.4 0.1
Fukuoka + Washington LA 0.9 0.4 0. 09

Mixing ratios and dewpoints for Fukuoka and Washington were
machine-tabulated at 50 mb increments from the surface to 400 mb and were
used to derive the moisture profiles, as described later.

7. STRATOSPHERE

Selection of the most suitable stratospheric moi-ture ascents from
the available data was indeed a vexing problem, for lack »f established
criteria or standards. The various groups making strstcspheric moisture
ascents were requected to select one or more best asce:*s, Some had already
given evaluations in print, and others had utilized instiun.entation now known
to be faulty. No scunding was used which showed any inictnal inconsistencies
(super-saturated layers) or malfunction during asceni.

Stratospheric moisture soundings utilized in construction of the
moisture profile were:
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a, Three NRL profiles of 8 Februa-y 1960, 8 April 1860, 27 June 1960

~wer~ gelected (Mastenbrook and Dinger 1960, 1961). All were taken at the NRL

Chesapeake Bay Annex (CBA) some 40 miles southeast of Washington, D, C.;
very long load lincs (900 ft) were sed to minimize possibie contamination
from the balloon. The investigators placed greatest confidence in the latest
two flights (27 June and 8 April) primarily becave~ of the excellent agreement
between ascent and descent. Actually, such agreement is a two - edged sword;
while it is doubtless a good test of the repeatability of the hygrometer, agree-
ment between ascent and descent may indicate a static weather situation; thus,
use of such data exclusively may lead to a highly biased result (Gutnick 1961).1 3
The investigators also felt that the 8 February flight provided representative
results during descent (all of the NRL data used in this study were descent
data),

b. Two Eallistic Rcsearch Laboratory (BRL) ascents, on 3 April 1960
at Aberdeen, Md. (unpublished) and 29 April 1960 at Ft, Monmouth, N. J.
(Marks 1960),1 6 were selected by Brown and Pybus from their extensive series
of nonsystematic moisture ascents, many as yet unpublished, from the Arctic
to the Antarctic,

¢, 7T'wo University of Denver ascents were chosen, an infrared
spectrometer flight on 18 April 1960 and a hygrometric ascent on 1 March 1961,
both at Holloman Air Force Base, Alamogordo, N. M, The spectrometer
ascent (Murcray, Murcray and Williams 1961)19 was the only one of its kind
having enough points for a complete profile to be constructed to 26 km; the
assumptions used in its computation appear reasonable and the ahape of the
mixing ratio profile agrees with that generally accepted. The hygrometric
ascent (unpublished) was described in a letter from D, Murcray as having
been made on the same balloon with a gpectrometer:

""The sun-seeker didn't work very well and we only got spectra up to
about 40,200 feet. The frostpoint instrument worked very well, and we got
what we think are reliable measurements of the frostpoint. We monitored the
temperature continually and also periodically heated the mirrc. o make sure
the frost was removed and let the mirror return to the frostpoint. The servo
system appeared to be working very well, and the system set at & definite
value with none of the oscillation we had noted when we flew the instrument
on cther occasions,!' Subsequent chuck of the data indicated that calibrations

were accurat:,

WA N AN
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d. The UKAEA nitrogen-cooled vapor irap was flown seven times
in the spring or summer of 1958, 1959, and 1860, over southern England
(Brown, et al. 1961).6 Samples were taken at elevation. ranging from 24. 4
to 30.2 km (mean height 27. 5 km). with special preca “ions to prevent or
check against contamination. By ''spiking'’ the hydrogen in the balloon
with deuterium, water vapor diffusion throug. the Lalloon skin was shown to
be unimportant.

e. One of the three General Mills’ molecular sieve ascents was
user, that of 15 March 1961, when two units were flown at San Angelo, Texas.
One malfunctioned; on the other the amount of ingested air at 21. Y km
measured by the flow meter agreed with the CO2 determination., The first
flight had been unsuccessful, ’

f. The JMA data had been carefully scre2ned before publication
(IJMA 1960)}4 Ascents on which the heating coil circuit gave trouble and those
which indicated supersaturation were rejected. The mean absolute differences
between dewpoints of the conventional radiosonde and the frostyuint
hygrometer at the 700 and 500 mb level were within the range of radiosonde
error.

g. The large number of MRF ascents, the high scientific calibre
of the personnel taking the observations, and the carefully-tested instrumen-
tation made their inclusion a virtuesl necessity.

All stratospheric moisture ascents used in this study are presented
in Figures 1 and 2. In both figures, the abscissa is mixing ratio, ona
logarithmic scale; the ordinate is height in kilometers. On the right, an
auxiliary scale gives the pressure corresponding to height in the revised
U. S. Standard Atmosphere, because most of the basic data were given in -
terms of mixing ratios at certain pressures, not heights; only the University
of Denver hygrometric and spectrographic flights, and the molecular sieve
and vapor trap results, had been published as mixing r«ti23 with respect to
height.

Use of a single Standard Atmosphere relation to ronvert the
various ascents to a common height basis leads tv only nesligible error,
Because pressure decreases ivgarithmically with height, the percentage
variation in the height of a pressure surface is much less than the percentage
variation in the pressure at a fixed height. For example, at 45°N, the
height of the 30 - mb surface varies about 4%, from a mean of 24 km in
winter to 25 km in summer; while at 24 km the mean pressure varies by
12%, from 28.2 mb in winter to 31. 8 mb in summer. Hence, the conversion

et
.
N
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of mixing-ratio measurements from pressure surface to height istreduces
less error than would the conversion from heights to pressure sarfacas.

However, this reverse conversion was required to detersmime the
frostpoints cor. esponding to the mixing ratios of the two University of Denver .
flighte, the molecular sieve, and the vapor trap. .‘ince these duta had been
simootiied originally, and applied to layers rather than points, the errur
resulting from the use of Stands rd Atmosphere relations is negligible; more
precise conversion, using atmospheric conditions prevailing st the times of
the various flights, was possible but not worth while, Future determinations
of stratospheric moisture would be of much greater utility if expressed in
terms of hoth pressure and height, B -

All the ascents except the JMA, MRF, BRL, and U of D frostpoint
soundings had been smoothed by the original investigetors., The JMA, MRF,
and Ft. Monmouth ascents were sulliciertly regular that they reawired no
smoothing. The U of D frostpoint ascent was smoothed by plotting tii e
mixing ratio at every 1 km interval. The Aberdeen ascent was deliberately e
left unsmoothed to illustrate the "'layering'' effect that is often a festure of o
stratospheric hygrometric ascents. Such layers may be real or may be e ..-."-‘
caused by ''over~control'’; when they do occur, the layers are found at R
different heights with time so that in a mean sounding they would be averaged o
out. The Aberdeen sounding was subsequently smoothed by eye.

The nonsystematic soundings could not be tested for biss. In several
cases nothing other than mixing ratio and height, or pressure, was measured.
This provided rio baais for comparison with climatic records. Testieg =
- single ascent for bias would be virtually meaningless. Thus the sonsystematic N .
soundings were used in the hope they were representative, ' O

8. RESULTS

8.1 Mixing Rato

Troposhperic portions of the mixing-ratio profile, shown iz Figure 3,
were obtained as discussed in Section 6, For the stratospheric portion, mixing
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ratios from cach selected ascent were ext "acted at the 8-, 1l-, 14-, 17,
20-, 26~, 29-, and 31 -km levels, and combined inio six mixing ratios
for each of these ninc levels (when available):

a. The mean of the three NRL ascents

b. The mean of the two BRL ascents

c. The U of D apectroscopi- -"scent

d. The U of D hygrometric ascent

e. 1he JMA values

f. The MRF values.

These values arc shown in Figure 3, together with the mean
mixing ratio for the vapor trap at 27, 5 km, the average height at which the
samples were taken, and the equivalent molecular-sieve data, An arithmetic
average value for each level was computed and plotted, giving equal weight
to each of these six mixing-ratio values. Such weighting is purely subjective,
admittedly. Assigning equal weights to, say, the MRF data (mean of
nearly 400 ascents) and to a single U of D sounding does not imply that the
U of D sounding is considered superior to the MRF ascerts, nor that the
soundings of any group are superior to those of any other group. The object
of this study was referencc atmosphere for mvisture which theoretically
shounld integrate time and space. Assigning equal weights appecared to
yield results that would best approximate the true profiles. Only time will
prove or disprove the validity of this personal opinion,

The smooth curve fitted to the average value at each of the nine
levels (Figure 3) is considered to represent the average stratospheric mid-
latitude mixing-ratio profile. Almost all the individual mixing-ratio
measurements, of which averages are shown in ¥igure 3, lie within one
order of magnitude of the mean curve (a8 shown there). Until more
obsgervations of known reliability are available, this interval may be
considered to cover the range of usual variation of th.: mixing ratio --
including perhaps 90 percent of all values in midd:. }itudes. (Since the
frequency distribution of mixing ratios is quite skewed, estimates of
standard deviation are of little utility).

The mixing-rativ profile shows analmost logarithmic decrease
with height from the surface to about 7 km; thence, a very steep moisture
gradient to 9 km, From 9 km the mixing ratio decreases less rapidly to
14 km, then is almost constant to 17 km, reaching its minimum value in
this layer. From 17 to 31 km, the mixing ratio increases logarithmically
with height.




Based on the MRF data, Roach (1961)2° suggested that up to 15 km
the mixing ratio varies with the fourth power of the pressure: w = a P‘. A
best-fitting straight line to the values shown in Figure 3, instead of the curve
actually presented, has an exponent of 3, 5, rather than 4, but Roach's
suggeation may be useful as a rough approximation, L

The moat questionable part of the profile below 11 km is the layer
between 7 and 8 km, for which no reliable data were available, Conventional
radiosondes usually stop recording humidity even below 7 km; at & and 6 km
they are notoriously inaccurate. Some investigators do not consider their ) ~
frostpoint hygrometers reliable in layers with u combination of fast ascent
and steep water-vapor gradient, such as prevail in this layer. o

8.2 Dewpoint-Frostpoint

The dewpoint-frostpoint profile (Figure 4) was derived in a manner
similar to that for the mixing ratio. In the troposphere, values used are the
Fukuoka - Washington averages, discussed in a previous Section. In the
stratosphere, all the observations used had been reported in terms of frost- .
point as well as mixing ratio, except the two University of Denver flighta,
using the molecula: sieve and the vapor trap; for these frostpoints were
obtained from the reported mixing ratios, using standard atmosphere pressures
for the indicated heights, Each individual or mean sounding was then plotted
as dewpoint - frostpoint against height, and values extracted at 3 - km intervals
shown in Figure 4. A smuuth curve was then drawn through the iucans com-
puted for the six (or fewer) values at each level, and values extracted for
Table 4, .

At all levels, the dewpoints are colder than the Standaru ‘t:nosphere
temperature (also shown in Figure 4), The stratospheric mixing-ratio and ,
frostpoint profiles are not quite equivalent, because some frostpoiunts were
approximated whereas all mixing ratio values had been given directly.

Also, the exact relation between dewpoint and mixing ratic st any
given pressure is not linear: a mean dewpoint at a given preasure computed
from the mean mixing ratio will be warmer than the average of individual
dewpoints, Thus the derived mean mixing-:atio profile could not be man~
ipulated to yield an accurate equivalent mean dewpoint profile,




8.3 Other Measurements

The mean annual relative humidity profile fror.: tue surface to 7 km
was derived in a conventional manner, us..'g available data sources
(Ratner 1857), Annual rel:tive humidity data for the climatic variety of mid-
latitudes were weighted and averaged to obtain representative values (Table 4),

Above 7 km, many of the selected stratospheric humidity ascents
did not have concurrent temperature and moisture data from which the relative
humidity could be obtained or even estimated. An eslimation of the average
annual relative humidity at 2 ~km intervals from 8 to 31 km was obtained
from the average frostpoints ( to the nearest whole degree) given in Table 4,
using standard atmosphere teinperatures for the same elevations, The
relative humidity thus computed underestimates the true relative humidity
since, at any given temperature the rate of change in relative humidity
decreases with increasing temperature - dewpoint depression, so humidities
irom means are lower than mean humidities. In addition, relative humidity
was also computed from the mean mixing ratio and corresponding Standard
Atmosphere conditions.

Furthermore, the dewpoint - frostpoint corresponding to the mean
mixing ratios, and the mixing ratios corresponding to the mean dewpoint ~
frostpoint values, were computed, again under Standard Atmosphere conditions.
Finally, precipitable water, absolute Lumidity (vapor density), and vapor
pressure were computed from each of the irdependently determined profiles
of mixing ratio and dewpoint - frostpoint.

All these supplemental data, otained by th~ cunropriate formular.,
are given in Table 4, together with explanation of th: « :thod of calculation.
Asterisks indicate the values recommended for generai use ; these generally
are values obtained most directly from one of the two independent profiles,
without Standard Atmosphere assumptions.

9. SUMMARY AND CONCLUSIONS

Mean Annual vertical profiles to 31 ki in middle latitudes of
mixing ratio and dewpoint - frostpoint, obtained as independent means from
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the same basic measurements of stratospheric moisture and routine tropos- -
pheric radiosonde observations, are presented in Figures 3 and 4 and Table 4.
Neither profile can be obtained from the other: the non-linear relation between
mixing ratio and condensation temperature (dewpoint - frostpoint) insures

that the respective means, separately obtained, will not correspond,

From each of the basic profiles, other expressions for the moisture
content of the atmosphere have been derived, using Standard Atmosphere
conditions where required. The two sets of values of absolute humidity
(vapor density), vapor pressure, precipitable water, and relative humidity
differ, of course. Preferred values are indicated by asterisk, (Relative
humidity up to 7 km was computed independently, from published radfosonde

summaries),

The most reliable single clement is the mixing ratio, because all the
selected data were given in terms ot mixing ratio and required 10 agproximations,
such as those used for the dewpoint - frostpoints. However, values derived
from the dewpoint - frostpoint seem more reliable than those based on the
mixing ratio, because fewer Standard Atmosphere assumptions are used. A
small change in dewpoint corresponds to a large change in mixing ratio,.
especially at low dewpoint: the mean annual mixing ratio at 10 km is 37 ppm,
while the mean frostpoint of -602 corresponds to a mixing ratio (at 264 mb}

of 26 ppm.

The tentative moisture profiles presented herein undoubtedly will be
revised and extended as the state-of-the-art advances. The Jarge amount
of subjectivity used in deriving the stratospheric portion of the moiature
profiles makes revision espscially desirable. Despite their deificiencies,
these models may be used until expected revisions and extensions appear,
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